CoHLA — Installation Manual

https://cohla.nl/

Thomas Nagele
Radboud University
thomas@cohla.nl

2nd August 2019

Contents

1 Introduction 1

2 Ubuntu installation 2
2.1 Requirements L Lo 2
2.2 Installation 2

3 Windows installation 5
3.1 Requirements L e 5
3.2 Imstallation 5

4 'Workspace installation 9

5 Sample project 10

1 Introduction

This manual describes the installation steps of the CoHLA project onto your
system. The project aims for an easier implementation of co-simulations of
systems using the High Level Architecture. Using a DSL, one can easily describe
a model-based co-simulation. From this co-simulation specification, code is
generated that can be compiled and simulated using OpenRT1I.

Trying out CoHLA? To try out CoHLA before installing all of its lib-
raries and dependencies on your system, you might want to try the Virtu-
alBox image that contains everything you need to experiment with CoHLA.
The VirtualBox image can be imported as a virtual machine in VirtualBox!
and consists of a basic Ubuntu 18.04 installation with all dependencies and
CoHLA itself installed. Eclipse has also been preconfigured, allowing you to
start on your own project within minutes. The image can be downloaded from
https://cohla.nl/downloads/.

Thttps://wuw.virtualbox.org/

https://cohla.nl/
mailto:thomas@cohla.nl
https://cohla.nl/downloads/
https://www.virtualbox.org/

2 Ubuntu installation

2.1 Requirements

The following requirements should be met before proceeding with this installa-
tion manual.

e Ubuntu Desktop 18.042

e A user having root privileges

e Internet connection

2.2 Installation

It might be useful to place all manually downloaded files into one directory to
retrieve these files later on or to possibly repeat one or more installation steps.
For example, a directory such as ~/Downloads/CoHLA could be used.

1. Start the installation by ensuring the most recent software is installed by
updating and upgrading using APT.

sudo apt-get update
sudo apt-get upgrade

2. Install the following packages from the Ubuntu software repository:

build-essential
cmake

git

libglm-dev
libglfw3-dev
libboost-system-dev
libboost-thread-dev
libxerces-c-dev
openjdk-8-jdk
python3

sudo apt-get install build-essential cmake git libglm-dev

libglfw3-dev libboost-system-dev libboost-thread-dev
libxerces-c-dev openjdk-8-jdk python3

3. Build and install OpenRTI.

(a)

Download and extract OpenRTI?

wget -0 OpenRTI.tar.bz2
https://sourceforge.net/projects/openrti/files/0OpenRTI -
tar xf OpenRTI.tar.bz2

0.9.0.tar.bz2

2https://wuw.ubuntu.com/desktop/1804
3https://sourceforge.net/projects/openrti/

https://www.ubuntu.com/desktop/1804
https://sourceforge.net/projects/openrti/

Move into directory that was just created, create a build directory
and move into it.

cd OpenRTI-0.9.0
mkdir build
cd build

Use CMake and Make to build and install OpenRTT.

cmake -DOPENRTI_BUILD_SHARED=0N
sudo make install

4. Build and install FMI Library.

(a)

Download and extract FMI Library*.

wget -0 "FMI-1lib.zip" http://www.jmodelica.org/
downloads/FMIL/FMILibrary-2.0.3-src.zip
unzip -u FMI-1ib.zip

Move into the directory that was just created, create a build directory
and move into it.

cd FMILibrary-2.0.3
mkdir build
cd build

Use CMake and Make to build and install FMI Library.

cmake -DFMILIB_INSTALL_PREFIX=/usr/local
-DFMILIB_BUILD_TESTS=0FF
-DFMILIB_GENERATE_DOXYGEN_DOC=0FF
sudo make install

The installation directory /opt/FMI-1ib can be changed to any other
desired installation directory.

5. Build and install Bullet Physics Library.

(a)

Download and extract Bullet Physics Library®. Then create a build
directory and move into it.

wget -0 bullet.tar.gz https://github.com/bulletphysics/
bullet3/archive/2.86.1.tar.gz

tar xf bullet.tar.gz

cd bullet3-2.86.1

mkdir build

cd build

Use CMake and Make to build and install Bullet Physics Library.

cmake -DBUILD_SHARED_LIBS=0N -DINSTALL_LIBS=0N
-DINSTALL_EXTRA_LIBS=0N -DBUILD_OPENGL3_DEMOS=0FF
-DBUILD_PYBULLET=0FF -DBUILD_CPU_DEMOS=0FF
-DBUILD_BULLET2_DEMOS=0FF -DBUILD_UNIT_TESTS=0FF
sudo make install

4http://www. jmodelica.org/FMILibrary
Shttp://bulletphysics.org/wordpress/

http://www.jmodelica.org/FMILibrary
http://bulletphysics.org/wordpress/

6. Download and install CodeSynthesis XSD6.

wget -0 cs-xsd.deb
https://www.codesynthesis.com/download/xsd/4.0/1linux-gnu/
x86_64/xsd_4.0.0-1_amd64.deb

sudo dpkg -i cs-xsd.deb

7. Install the OpenRTI Libraries.

(a) Clone the CoHLA project, create a build directory and move into it.

git clone https://github.com/phpnerd/CoHLA.git
mkdir CoHLA/libs/build
cd CoHLA/libs/build

(b) Build and install the libraries.

cmake -DCMAKE_INSTALL_PREFIX=/opt/OpenRTI-1libs
-DBUILD_SHARED_LIBS=0N
sudo make install

Instead of /opt/OpenRTI-1ibs, any other desired installation direct-
ory may be used.

8. Install the Rotalumis simulator for POOSL models.

(a) Download the integration executable of Rotalumis”

wget http://www.es.ele.tue.nl/rotalumis/
executables/integration/linux/64bit/rotalumis

(b) Move the Rotalumis executable to /usr/bin and make it runnable.

sudo cp rotalumis /usr/bin/rotalumis
sudo chmod u+x /usr/bin/rotalumis

Shttps://www.codesynthesis.com/products/xsd/
"http://www.es.ele.tue.nl/rotalumis/executables/integration/linux/

https://www.codesynthesis.com/products/xsd/
http://www.es.ele.tue.nl/rotalumis/executables/integration/linux/

3 Windows installation

3.1 Requirements

The following requirements should be met before proceeding with this installa-
tion manual.

e Windows 7 or 10, 64-bit

e An user with administration permissions
e Internet connection

e Having the following software installed

— Visual Studio 2017 Build Tools: https://www.visualstudio.com/
downloads/#build-tools-for-visual-studio-2017. The follow-
ing components are required.

* Visual C++ Build Tools core features

* VC++ 2017 v141 toolset (x86,x64)

* Visual C4++ 2017 Redistributable Update

* Windows 10 SDK for Desktop C++ (x86 and x64)

— Python 3.6: https://www.python.org/downloads/

— Oracle Java SE Development Kit 8: http://www.oracle.com/technetwork/

java/javase/downloads/jdk8-downloads-2133151.html

CMake: https://cmake.org/download/

Git: https://git-scm.com/download

— Archiving tool such as WinRAR® or 7-zip®

e Fxecutables for Python, Java, CMake and Git should be added to the
PATH variable.

3.2 Installation

This manual describes installation steps to install all dependencies that are re-
quired to work with the HLA-DSL into the directory C:\opt. If any other
installation location is desired, the provided command should be changed ac-
cordingly.

1. Create the directories C:\opt\bin and C:\opt\1lib and add them to the
Windows PATH variable.

2. Create the directory C:\opt\downloads.
3. Download, build and install OpenRT1.

(a) Download the OpenRTI sources from https://sourceforge.net/
projects/openrti/ to C:\opt\downloads.

(b) Extract the downloaded file into this directory.

8https://rarlab.com/download.htm
9http://www.7-zip.org/download.html

https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.python.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://cmake.org/download/
https://git-scm.com/download
https://sourceforge.net/projects/openrti/
https://sourceforge.net/projects/openrti/
https://rarlab.com/download.htm
http://www.7-zip.org/download.html

Create the directory OpenRTI-0.9.0\build.

Open the Developer Command Prompt for VS 2017 and navigate to
the directory that you have just created.

cd OpenRTI-0.9.0\build

Use CMake to prepare, build and install OpenRTI. Warnings may be
displayed during the compilation, but no errors should occur.

cmake -G "Visual Studio 15 2017 Win64"
-DCMAKE_INSTALL_PREFIX=C:\opt
-DOPENRTI_BUILD_SHARED=0N
-DCMAKE_CXX_FLAGS="-DFD_SETSIZE=2048"

cmake --build . --config Release --target imnstall

The parameter FD_SETSIZE increases the maximum amount of feder-
ates that may connect to the RTI. If you plan on building smaller or
bigger co-simulations, you may adjust this value accordingly.

4. Download, build and install the FMI Library.

(a)

Download the FMI Library 2.0.3 sources (FMILibrary-2.0.3-src.zip)
from http://www. jmodelica.org/FMILibrary to C: \opt\downloads.

Extract the downloaded file into this directory.
Create the directory FMILibrary-2.0.3\build.

Open the Developer Command Prompt for VS 2017 and navigate to
the directory that you have just created.

Use CMake to prepare, build and install FMI Library.

cmake -G "Visual Studio 15 2017 Win64"
-DFMILIB_INSTALL_PREFIX=C:\opt
-DFMILIB_BUILD_TESTS=0FF
-DFMILIB_GENERATE_DOXYGEN_DOC=0FF

cmake --build . --config Release --target imnstall

5. Download, build and install the Bullet Physics Library.

Download the Bullet Physics Library sources from https://github.
com/bulletphysics/bullet3/releases to C:\opt\downloads.

Extract the downloaded file into this directory.
Create the directory bullet3-2.86.1\build.

Open the Developer Command Prompt for VS 2017 and navigate to
the directory that you have just created.

Use CMake to prepare, build and install Bullet.

cmake -G "Visual Studio 15 2017 Win64"
-DCMAKE_INSTALL_PREFIX=C:\opt -DINSTALL_EXTRA_LIBS=0N
-DINSTALL_LIBS=0N -DBUILD_OPENGL3_DEMOS=0FF
-DBUILD_PYBULLET=0FF -DBUILD_CPU_DEMOS=0FF
-DBUILD_BULLET2_DEMOS=0FF -DBUILD_UNIT_TESTS=0FF
-DUSE_MSVC_RUNTIME_LIBRARY_DLL=0N

cmake --build . --config Release --target install
cmake -DBUILD_SHARED_LIBS=0N
cmake --build . --config Release --target install

http://www.jmodelica.org/FMILibrary
https://github.com/bulletphysics/bullet3/releases
https://github.com/bulletphysics/bullet3/releases

6. Download, build and install GLFW.

Download the GLFW sources from http://www.glfw.org/ to
C:\opt\downloads. This manual uses GLFW version 3.2.1, but more
recent versions should also work.

Extract the downloaded file into this directory.

Create the directory glfw-3.2.1\build. When using a more recent
version of GLFW, this directory may be slightly different.

Open the Developer Command Prompt for VS 2017 and navigate to
the directory that you have just created.

Use CMake to prepare, build and install GLFW.

cmake -G "Visual Studio 15 2017 Win64"
-DBUILD_SHARED_LIBS=0N -DCMAKE_INSTALL_PREFIX=C:\opt

cmake --build . --config Release --target install

7. Download, build and install GLM.

(a)

Download the GLM sources from https://glm.g-truc.net/ to
C:\opt\downloads.

Extract the downloaded file into this directory.
Create the directory glm\build.

Open the Developer Command Prompt for VS 2017 and navigate to
the directory that you have just created.

Use CMake to prepare, build and install GLM.

cmake -G "Visual Studio 15 2017 Win64"
-DCMAKE_INSTALL_PREFIX=C:\opt
cmake --build . --config Release --target imnstall

8. Download, build and install the XercesC library.

Download the XercesC sources from http://xerces.apache.org/
xerces-c/download.cgi to C:\opt\downloads. This manual uses
version 3.2.0 of XercesC, but more recent versions should also work.

Extract the downloaded file into this directory.

Create the directory xerces-c-3.2.0\build. When using a more
recent version of XercesC, this directory may be slightly different.

Open the Developer Command Prompt for VS 2017 and navigate to
the directory that you have just created.

Use CMake to prepare, build and install XercesC.

cmake -G "Visual Studio 15 2017 Win64"
-DCMAKE_INSTALL_PREFIX=C:\opt -DBUILD_SHARED_LIBS=0N

cmake --build . --config Release --target imnstall

9. Download and set the header files of CodeSynthesis XSD.

http://www.glfw.org/
https://glm.g-truc.net/
http://xerces.apache.org/xerces-c/download.cgi
http://xerces.apache.org/xerces-c/download.cgi

(a) Download CodeSynthesis XSD for Windows!® to C:\opt\downloads.

(b) Extract the files in the current directory. Move into the resulting
directory.

(c) Copy the folder 1ibxsd\xsd to C:\opt\include.
(d) You should now have a directory C:\opt\include\xsd\cxx contain-
ing the header files for CodeSynthesis XSD.

10. Download and install the latest Boost libraries.

(a) Download version 1.65.1 of the Boost binary for Visual Studio from
https://sourceforge.net/projects/boost/files/boost-binaries/
1.65.1/. Make sure you download an installer for “msvc-14.1-64".
This file should have the name boost_1_65_1-msvc-14.1-64.exe.

(b) Run the installer and select the installation folder C:\opt\boost.
(¢) Add the Boost library directory (e.g. C:\opt\boost\1ib64-msvc-14.1)
to the global PATH variable.
11. Fetch, build and install the OpenRTT libraries.

(a) Clone the CoHLA project in the C:\opt\downloads directory and
move into the directory “CoHLA”.

‘git clone https://github.com/phpnerd/CoHLA.git

(b) Create a new directory called build in the 1ibs directory. You should
now have a directory libs\build.

(¢) Open the Developer Command Prompt for VS 2017 and navigate to
the directory that you have just created.

(d) Build and install the libraries using CMake.

cmake -G "Visual Studio 15 2017 Win64"
-DCMAKE_INSTALL_PREFIX=C:\opt\OpenRTI-1libs
-DBOOST_ROOT=C:\opt\boost -DBUILD_SHARED_LIBS=0FF

cmake --build . --config Release
cmake -DBUILD_SHARED_LIBS=0N ..
cmake --build . --config Release --target imnstall

12. Download the Rotalumis executable!! and place it in C:\opt\bin.

Ohttps://wuw.codesynthesis.com/download/xsd/4.0/windows/i686/xsd-4.0.
0-i686-windows.zip

Hhttp://www.es.ele.tue.nl/rotalumis/executables/integration/windows/rotalumis.
exe

https://sourceforge.net/projects/boost/files/boost-binaries/1.65.1/
https://sourceforge.net/projects/boost/files/boost-binaries/1.65.1/
https://www.codesynthesis.com/download/xsd/4.0/windows/i686/xsd-4.0.0-i686-windows.zip
https://www.codesynthesis.com/download/xsd/4.0/windows/i686/xsd-4.0.0-i686-windows.zip
http://www.es.ele.tue.nl/rotalumis/executables/integration/windows/rotalumis.exe
http://www.es.ele.tue.nl/rotalumis/executables/integration/windows/rotalumis.exe

4 Workspace installation

This section describes how the development environment for CoHLA can be

installed.

1. Download one of the Eclipse'? packages.

2. Extract the downloaded compressed file to a location where you want
Eclipse to be or install Eclipse in a location of your choice.

3. Start Eclipse and select a workspace location for starting your co-simulation
projects.

4. Close the welcome screen if it pops up.

5. Open the installation wizard by selecting Install New Software from the
Help menu.

6. Add the plug-in update website to the source locations.

Press Add.

Give the source a proper name, for example “CoHLA”.

)
)
¢) Set the location to https://downloads.cohla.nl/plugin.
) Select the latest CoOHLA feature and press Next.

)

Proceed to the end and press Finish. You may be asked to trust the
author of the software.

(f) Eclipse should eventually be restarted to activate the plug-in.

To start a new CoHLA project to describe a co-simulation, simply create a new
project as Project (in section General). When adding a .cohla-file, you will
be prompted whether to convert the project to a CoHLA project. Agree if you
intended on creating a CoHLA project. Upon building of the HLA project new
sources are generated in the src-gen folder inside your project. This location
can be changed using the Eclipse settings.

12https ://www.eclipse.org/downloads/eclipse-packages/

https://downloads.cohla.nl/plugin
https://www.eclipse.org/downloads/eclipse-packages/

5 Sample project

The CoHLA project contains a sample project called the RoomThermostat.
This project was already downloaded in steps 7 and 11 for Linux and Win-
dows respectively. The RoomThermostat project is a co-simulation of a sample
domestic thermostat system for maintaining the temperature in a number of
rooms. The sources for the project are located in the RoomThermostat direct-
ory. The following steps describe how to create a CoHLA project from these
sources and how to run a co-simulation.

1. Start your Eclipse instance with the CoHLA plugin installed and select
a workspace location for your co-simulation projects, similar to what was
described in Section 4.

2. Create a new project. Make sure that it is a General Project as listed in
the wizard.

3. Enter “RoomThermostat” as project name and press Finish.

4. Copy the RoomThermostat sources from the CoHLA project into the pro-
ject using a file manager. The project should now contain a directory
called “models” and two files having the .cohla file extension.

5. Refresh the Package Explorer in Eclipse by pressing F5.
6. Open one of the two source files, either House.cohla or orti.cohla.

7. Eclipse should now ask whether to convert the project to an Xtext project
or not. Press Yes to convert the project.

8. Eclipse automatically generates the source files for the co-simulation upon
saving the main file, which is House. cohla for this project. The generated
files are located in the src-gen directory in the project.

9. Open a terminal (Linux) or Developer Command Prompt for VS 2017
(Windows) and move into the directory containing the generated sources:
RoomThermostat/src-gen/House.

10. Build the sources using the run script. Warnings may be displayed, but
the script should return without an error.

./run.py -bv

11. Use the run script to run the co-simulation with the ComfyBase situation
applied to the simulations.

./run.py -t conf/house.topo -s conf/House/ComfyBase.situation
-e

12. When asked, press ENTER to start the co-simulation.

13. Depending on the speed of your system, the simulation may run for a while.
When the co-simulation finished, the logs — including a CSV file — can be
found in the directory RoomThermostat/src-gen/House/logs/<timestamp>.

10

	Introduction
	Ubuntu installation
	Requirements
	Installation

	Windows installation
	Requirements
	Installation

	Workspace installation
	Sample project

